Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Virus Evol ; 8(2): veac069, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1997081

ABSTRACT

Retrospective evaluation of past waves of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic is key for designing optimal interventions against future waves and novel pandemics. Here, we report on analysing genome sequences of SARS-CoV-2 from the first two waves of the epidemic in 2020 in Hungary, mirroring a suppression and a mitigation strategy, respectively. Our analysis reveals that the two waves markedly differed in viral diversity and transmission patterns. Specifically, unlike in several European areas or in the USA, we have found no evidence for early introduction and cryptic transmission of the virus in the first wave of the pandemic in Hungary. Despite the introduction of multiple viral lineages, extensive community spread was prevented by a timely national lockdown in March 2020. In sharp contrast, the majority of the cases in the much larger second wave can be linked to a single transmission lineage of the pan-European B.1.160 variant. This lineage was introduced unexpectedly early, followed by a 2-month-long cryptic transmission before a soar of detected cases in September 2020. Epidemic analysis has revealed that the dominance of this lineage in the second wave was not associated with an intrinsic transmission advantage. This finding is further supported by the rapid replacement of B.1.160 by the alpha variant (B.1.1.7) that launched the third wave of the epidemic in February 2021. Overall, these results illustrate how the founder effect in combination with the cryptic transmission, instead of repeated international introductions or higher transmissibility, can govern viral diversity.

2.
PeerJ ; 8: e9255, 2020.
Article in English | MEDLINE | ID: covidwho-1389780

ABSTRACT

Here we aim to describe early mutational events across samples from publicly available SARS-CoV-2 sequences from the sequence read archive and GenBank repositories. Up until 27 March 2020, we downloaded 50 illumina datasets, mostly from China, USA (WA State) and Australia (VIC). A total of 30 datasets (60%) contain at least a single founder mutation and most of the variants are missense (over 63%). Five-point mutations with clonal (founder) effect were found in USA next-generation sequencing samples. Sequencing samples from North America in GenBank (22 April 2020) present this signature with up to 39% allele frequencies among samples (n = 1,359). Australian variant signatures were more diverse than USA samples, but still, clonal events were found in these samples. Mutations in the helicase, encoded by the ORF1ab gene in SARS-CoV-2 were predominant, among others, suggesting that these regions are actively evolving. Finally, we firmly urge that primer sets for diagnosis be carefully designed, since rapidly occurring variants would affect the performance of the reverse transcribed quantitative PCR (RT-qPCR) based viral testing.

3.
Cell ; 184(1): 64-75.e11, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1064909

ABSTRACT

Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Subject(s)
Amino Acid Substitution , COVID-19/transmission , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Aspartic Acid/analysis , Aspartic Acid/genetics , COVID-19/epidemiology , Genome, Viral , Glycine/analysis , Glycine/genetics , Humans , Mutation , SARS-CoV-2/growth & development , United Kingdom/epidemiology , Virulence , Whole Genome Sequencing
4.
Natl Sci Rev ; 8(1): nwaa246, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-793335

ABSTRACT

How many incoming travelers (I0 at time 0, equivalent to the 'founders' in evolutionary genetics) infected with SARS-CoV-2 who visit or return to a region could have started the epidemic of that region? I0 would be informative about the initiation and progression of epidemics. To obtain I0 , we analyze the genetic divergence among viral populations of different regions. By applying the 'individual-output' model of genetic drift to the SARS-CoV-2 diversities, we obtain I0 < 10, which could have been achieved by one infected traveler in a long-distance flight. The conclusion is robust regardless of the source population, the continuation of inputs (It for t > 0) or the fitness of the variants. With such a tiny trickle of human movement igniting many outbreaks, the crucial stage of repressing an epidemic in any region should, therefore, be the very first sign of local contagion when positive cases first become identifiable. The implications of the highly 'portable' epidemics, including their early evolution prior to any outbreak, are explored in the companion study (Ruan et al., personal communication).

SELECTION OF CITATIONS
SEARCH DETAIL